1	$1 + \frac{3}{2}x^{\frac{1}{2}}$	1+3	B2 for $kx^{\frac{1}{2}}$, or M1 for $x^{\frac{3}{2}}$ seen before	4
			differentiation or B1 ft their $x^{\frac{3}{2}}$ correctly	4
			differentiated	

2	$y = 7 - 3/x^2$ oe	5	B3 for $(y =) -3/x^2 + c$ [B1 for each of k/x^2 , $k = -6/2$ and $+c$] and M1 for substituting (1, 4) in their attempted integration with $+c$, the constant of integration	5
---	--------------------	---	---	---

3	gradient = $\frac{4\sqrt{9.5} - 12}{9.5 - 9}$ 0.6577 to 0.66 $9 < x_{\rm C} < 9.5$	M1 A1 B1 [3]	or 0.657656isw	$4\sqrt{38} - 244\sqrt{38} - 24$ allow $8.53 \le x_{\rm C} < 9$
4	$6x^{2} + 18x - 24$ their $6x^{2} + 18x - 24 = 0$ or > 0 or ≥ 0 -4 and $+ 1$ identified oe x < -4 and $x > 1$ cao	B1 M1 A1 A1 [4]	or $x \le -4$ and $x \ge 1$	or sketch of $y = 6x^2 + 18x - 24$ with attempt to find <i>x</i> -intercepts if B0M0 then SC2 for fully correct answer

PhysicsAndMathsTutor.com

5			$\frac{dy}{dx} = 2x - 7 or (x - 3.5)^2 [-3.5^2]$ x = 3.5 x < 3.5 www cao	M1 M1 A1 [3]	M2 for $x = 3.5$ identified (for example, from symmetry) allow $x \le 3.5$	mark the final answer
---	--	--	--	--------------------------------	---	-----------------------

6	$40x^3$	2	-1 if extra term	2

7	i	$h = 120/x^2$	B1		
		$A = 2x^2 + 4xh$ o.e.	M1		
		completion to given answer	A1	at least one interim step shown	3
		· · · · · · · · · · · · · · · · · · ·	0	A fam la 2 a la chuda d	
	ш	$A' = 4x - 480/x^2$ o.e.	2	1 for KX ⁻ o.e. Included	
		$A^{\prime\prime} = 4 + 960 / x^3$	2	ft their A' only if kx ⁻² seen ; 1 if one	4
				error	
	iii	use of $A' = 0$	M1		
		$x = \sqrt[3]{120}$ or 4.9(3)	A1		
		Test using A' or A'' to confirm			
		minimum	T1		-
		Substitution of their x in A	M1	Dependent on previous M1	5
		A = 145.9 to 146	A1	• •	

8	$\frac{5}{2} \times 6x^{\frac{3}{2}}$	1+1	- 1 if extra ter	2
	2			

9	(i) −0.93, -0.930, -0.9297	2	M1 for grad = $(1 - \text{their } y_B)/(2 - 2.1)$ if M0, SC1 for 0.93	
	(ii) answer strictly between 1.91 2 or 2 and 2.1	B1	don't allow 1.9 recurring	
	(iii) $y' = -8/x^3$, gradient = -1	M1A1		5

10	<i>x</i> < 0 and <i>x</i> > 6	3	B2 for one of these or for 0 and 6	
			identified or M1 for x^2 -6x > 0 seen (M1 if y found correctly and sketch	3
			drawn)	

11	$(y =) 2x^3 + 4x^2 - 1$ accept $2x^3 + 4x^2 + c$ and $c = -1$	4	M2 for $(y =) 2x^3 + 4x^2 + c$ (M1 if one error) and M1 for subst of (1, 5) dep on their y =, +c, integration attempt.	4

PhysicsAndMathsTutor.com