$\mathbf{1}$	$1+\frac{3}{2} x^{\frac{1}{2}}$	$1+3$	B2 for $k x^{\frac{1}{2}}$, or M1 for $x^{\frac{3}{2}}$ seen before differentiation or B1 ft their $x^{\frac{3}{2}}$ correctly differentiated	4

$\mathbf{2}$	$y=7-3 / x^{2}$ oe	5	B3 for $(y=)-3 / x^{2}+c$ [B1 for each of $k / x^{2}, k=-6 / 2$ and $\left.+c\right]$ and M1 for substituting $(1,4)$ in their attempted integration with $+c$, the constant of integration	5

$\mathbf{6}$	$40 x^{3}$	2	-1 if extra term	2

\begin{tabular}{|c|c|c|c|c|c|}
\hline 7 \& i
ii
iii \& \begin{tabular}{l}
\[
\begin{aligned}
\& h=120 / x^{2} \\
\& A=2 x^{2}+4 x h \text { o.e. }
\end{aligned}
\] \\
completion to given answer
\[
\begin{aligned}
\& A^{\prime}=4 x-480 / x^{2} \text { o.e. } \\
\& A^{\prime \prime}=4+960 / x^{3}
\end{aligned}
\] \\
use of \(A^{\prime}=0\)
\[
x=\sqrt[3]{120} \text { or } 4.9(3 . .)
\] \\
Test using \(A^{\prime}\) or \(A^{\prime \prime}\) to confirm minimum \\
Substitution of their x in A
\[
A=145.9 \text { to } 146
\]
\end{tabular} \& \[
\begin{aligned}
\& \hline \mathrm{B} 1 \\
\& \mathrm{M} 1 \\
\& \mathrm{~A} 1 \\
\& \\
\& 2 \\
\& 2 \\
\& \\
\& \mathrm{M} 1 \\
\& \mathrm{~A} 1 \\
\& \\
\& \\
\& \text { T1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
at least one interim step shown \\
1 for \(k x^{-2}\) o.e. included ft their \(A^{\prime}\) only if \(k x^{-2}\) seen ; 1 if one error \\
Dependent on previous M1
\end{tabular} \& 3
4

5 \\
\hline
\end{tabular}

8	$\frac{5}{2} \times 6 x^{\frac{3}{2}}$	$1+1$	-1 if extra ter	2

9	(i) $-0.93,-0.930,-0.9297 \ldots$			
(ii) answer strictly between 1.91 2 or 2 and 2.1 (iii) $y^{\prime}=-8 / x^{3}$, gradient $=-1$	2	M1 for grad $=\left(1-\right.$ their $\left.y_{\mathrm{B}}\right) /(2-2.1)$ if M0, SC1 for 0.93 don't allow 1.9 recurring	M1A1	

10	$x<0$ and $x>6$	3	B2 for one of these or for 0 and 6 identified or M1 for $x^{2}-6 x>0$ seen (M1 if y found correctly and sketch drawn)	3

11	(y $) 2 x^{3}+4 x^{2}-1$ accept $2 x^{3}+4 x^{2}+c$ and $c=-1$	4	M2 for $(y=) 2 x^{3}+4 x^{2}+c(M 1$ if one error) and M1 for subst of $(1,5)$ dep on their $y=,+c$, integration attempt.	4

